Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Braz. j. med. biol. res ; 51(12): e7574, 2018. graf
Article in English | LILACS | ID: biblio-974257

ABSTRACT

Bone fracture is a common medical condition, which may occur due to traumatic injury or disease-related conditions. Evidence suggests that microRNAs (miRNAs) can regulate osteoblast differentiation and function. In this study, we explored the effects and mechanism of miR-221 on the growth and migration of osteoblasts using MC3T3-E1 cells. The expression levels of miR-221 in the different groups were measured by qRT-PCR. Then, miR-221 mimic and inhibitor were transfected into MC3T3-E1 cells, and cell viability and migration were measured using the CCK-8 assay and the Transwell migration assay. Additionally, the expression levels of differentiation-related factors (Runx2 and Ocn) and ZFPM2 were measured by qRT-PCR. Western blot was used to measure the expression of cell cycle-related proteins, epithelial-mesenchymal transition (EMT)-related proteins, ZFPM2, and Wnt/Notch, and Smad signaling pathway proteins. miR-221 was significantly up-regulated in the patients with lumbar compression fracture (LCM) and trochanteric fracture (TF). miR-221 promoted ALP, Runx2, and OPN expressions in MC3T3-E1 cells. miR-221 overexpression significantly increased cell proliferation, migration, differentiation, and matrix mineralization, whereas suppression of miR-221 reversed these effects. Additionally, the results displayed that ZFPM2 was a direct target gene of miR-221, and overexpression of ZFPM2 reversed the promoting effects of miR-221 overexpression on osteoblasts. Mechanistic study revealed that overexpression of miR-221 inactivated the Wnt/Notch and Smad signaling pathways by regulating ZFPM2 expression. We drew the conclusions that miR-221 overexpression promoted osteoblast proliferation, migration, and differentiation by regulation of ZFPM2 expression and deactivating the Wnt/Notch and Smad signaling pathways.


Subject(s)
Humans , Animals , Rabbits , Cell Differentiation/physiology , Cell Movement/physiology , MicroRNAs/physiology , Cell Proliferation/physiology , DNA-Binding Proteins/physiology , Fractures, Bone/blood , Osteoblasts/physiology , Reference Values , Transcription Factors/blood , Cell Survival/physiology , Blotting, Western , Analysis of Variance , 3T3 Cells , MicroRNAs/blood , DNA-Binding Proteins/blood
2.
Experimental & Molecular Medicine ; : 36-44, 2012.
Article in English | WPRIM | ID: wpr-211720

ABSTRACT

Breast cancer is the most common cancer in women worldwide. It is necessary to identify biomarkers for early detection, to make accurate prognoses, and to monitor for any recurrence of the cancer. In order to identify potential breast cancer biomarkers, we analyzed the plasma samples of women diagnosed with breast cancer and age-matched normal healthy women by mTRAQ-based stable isotope-labeling mass spectrometry. We identified and quantified 204 proteins including thrombospondin-1 (THBS1) and bromodomain and WD repeat-containing protein 3 (BRWD3) which were increased by more than 5-fold in breast cancer plasma. The plasma levels of the two proteins were evaluated by Western blot assay to confirm for their diagnostic value as serum markers. A 1.8-fold increase in BRWD3 was observed while comparing the plasma levels of breast cancer patients (n = 54) with age-matched normal healthy controls (n = 30), and the area under the receiver operating characteristic curve (AUC) was 0.917. THBS1 was detected in pooled breast cancer plasma at the ratio similar to mTRAQ ratio (> 5-fold). The AUC value for THBS1 was 0.875. The increase of THBS1 was more prominent in estrogen receptor negative and progesterone receptor negative patients than receptor-positive patients. Our results are evidence of the diagnostic value of THBS1 in detecting breast cancer. Based on our findings, we suggest a proteomic method for protein identification and quantification lead to effective biomarker discovery.


Subject(s)
Adult , Female , Humans , Middle Aged , Breast Neoplasms/diagnosis , Early Detection of Cancer , Gene Expression Profiling , Pathology, Molecular/methods , Predictive Value of Tests , Prognosis , Proteomics , Thrombospondin 1/blood , Transcription Factors/blood , Biomarkers, Tumor/blood
SELECTION OF CITATIONS
SEARCH DETAIL